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Introduction

A/B tests often analyzed with simple methods (t-tests, linear regression
- CUPED)
These methods flatten time-dimension into single ‘post-treatment’
outcome
In presence of effect heterogeneity, post-treatment average may not be
good summary statistic for decisionmaking

Figure 1. A Panel Data Anscombe’s Quartet

Contribution

Propose scalable panel-regression methods using reparametrization +
compression
Reparametrization: Mundlak trick - replace intercepts with regressor averages
Compression: Mundlak specification is stratified and has much lower cardinality
than FE specification - Weighted Least Squares with Frequency Weights

open-source Python libraries for in-memory and out-of-memory
computation
out-of-memory: duckreg (powered by DuckDB)
in-memory: pyfixest

Compression performed in SQL: scales to arbitrarily large data

The Mundlak Representation

Mundlak (1978) insight: unit intercepts can be eliminated using
covariate averages.
Extends to arbitrary stratified regressions (2WFE is a special case)
[Arkhangelsky and Imbens (2023)]
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N units, T time periods, C treatment cohorts;M, M̃ size of design matrix
RHS of (1) unique byWit, αi + γt → cannot be compressed; infeasible at
large scaleN >> T ; 20m obs ×90 days = 1.8 billion obs
RHS of (2) unique byWit, W̄i,·, W̄·,t, which is compressible
For regular A/B: TWM has Ñ =4 observations

coefs, HC(0-3) SEs computable in closed-form from summary stats
(Wong et al)
Clustered SEs with cluster bootstrap, or closed-form via distributed
computing

Numerical Experiments

DGP: Yit = αi + γt + βit + τitWit + εit

Time trend piece is unmodeled; variance of βi controls degree of
misspecification
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Temporal Heterogeneity
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Temporal Heterogeneity
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Timing: duckreg:pyfixest:statsmodels runtimes scale 1 : 40 : 600 for
cross-sectional regressions
panel simulations: 14K to 140M observations
forN, T = 140M, 42, duckreg (OOM) is between 4-6x faster than pyfixest
(in-memory)
duckreg scales arbitrarily well
statsmodels: Repeated OOM errors
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